Atmospheric Chemistry of CH₃I: Reaction with Atomic Chlorine at 1–700 Torr Total Pressure and 295 K

Merete Bilde

Atmospheric Chemistry, Building 313, Plant Biology and Biogeochemistry Department, Risø National Laboratory, DK-4000 Roskilde, Denmark

Timothy J. Wallington*

Ford Research Laboratory, SRL-3083, Ford Motor Company, P.O. Box 2053, Dearborn, Michigan 48121-2053

Received: October 10, 1997; In Final Form: December 31, 1997

The title reaction was studied using long path length FTIR spectroscopy coupled to a smog chamber. In 1 Torr of N₂ diluent at 295 K a large kinetic isotope effect was observed, $k_{\rm H}/k_{\rm D} = 6$, suggesting that the reaction of Cl atoms with CH₃I proceeds via H atom abstraction to give CH₂I radicals and HCl with a rate constant of $(9.0 \pm 1.8) \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹. In 700 Torr total pressure of N₂, O₂, and air diluents the reactivity of Cl toward CH₃I was 50% greater than that at 1 Torr. The increase in reactivity is ascribed to the formation of the CH₃I–Cl adduct. In 700 Torr of O₂ the majority ($\approx 98\%$) of the adduct decomposes back to reactants, and a small fraction ($\approx 2\%$) is lost via one or more processes that do not regenerate reactants. In 1 atm of air at 295 K the reaction of Cl atoms with CH₃I produces less than 20% yield of CH₃Cl. The potential role of the title reaction in atmospheric chemistry is discussed.

1. Introduction

The atmospheric chemistry of iodine is a topic of current interest. It has been suggested that iodine chemistry may influence tropospheric HO₂/OH and NO₂/NO concentration ratios and hence the oxidizing capacity of the atmosphere.^{1,2} Unlike the corresponding chlorinated and brominated compounds, iodo compounds and reservoir species are easily photodissociated in the near-UV and visible. As a consequence, iodine in its various forms is rapidly converted to iodine atoms which can take part in ozone-depleting cycles in the troposphere and lower stratosphere.³

CH₃I is generally regarded as the main carrier of marine iodine to the atmosphere. It is emitted into the atmosphere from the oceans at a rate of 1–2 Tg/yr.^{2,4} Concentrations of methyl iodide in the marine boundary layer are typically 1–4 pptv^{5,6} but can be as high as 43 pptv.⁷ The dominant atmospheric fate of CH₃I is photolysis which occurs at a rate of approximately 5×10^{-6} s⁻¹, corresponding to an atmospheric lifetime of a few days.^{8,9}

The reaction of atomic chlorine with CH₃I has been the subject of three recent studies. Wine and co-workers^{10,11} studied the kinetics of reaction 1 at 218–694 K in 5–500 Torr of N₂ and observed two reaction channels: H atom abstraction (channel 1a) and addition to form a weakly bound adduct (channel 1b).

 $Cl + CH_3I \rightarrow CH_2I + HCl$ (1a)

$$Cl + CH_3I + M \rightleftharpoons CH_3I - Cl + M$$
 (1b, -1b)

$$Cl + CH_3I \rightarrow CH_3Cl + I$$
 (1c)

Under near ambient conditions (297 K, 500 Torr of N₂) reaction 1 proceeds predominately (\approx 95%) via adduct formation with an overall rate constant of $k_1 \approx 2 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹.¹¹ The rate constant reported for hydrogen abstraction was $k_{1a} =$ 5.4 × 10⁻¹¹ exp(-1250/*T*) cm³ molecule⁻¹ s⁻¹.¹¹ Kambanis et al.¹² studied k_1 over the temperature range 273–363 K at a very low total pressure (2 mTorr of helium) where channel 1b should be of negligible importance. Kambanis et al. report k_{1a} = 1.33 × 10⁻¹¹ exp(-700/*T*) cm³ molecule⁻¹ s⁻¹.¹² Finally, Goliff and Rowland¹³ conducted a product study of reaction 1 and report a 9% yield of CH₃Cl.

Combining $k_1 \approx 2 \times 10^{-11}$ cm³ molecule⁻¹ s^{-1 11} with an estimate of the chlorine atom concentration in the marine boundary layer of 10^4 cm⁻³ $^{14-16}$ gives a pseudo-first-order loss rate of CH₃I with respect to reaction 1 of 2×10^{-7} s⁻¹ (approximately 25 times slower than loss of CH₃I via photolysis). The atmospheric fate of the CH₃I–Cl adduct formed in channel 1b is uncertain. Conversion of the adduct into CH₃Cl would represent a small, but significant, oceanic flux of CH₃Cl. The global flux of CH₃Cl to the atmosphere is presently estimated to be of the order of 3–3.5 Tg yr^{-1.17,18} The FTIR smog chamber system at Ford Motor Company was employed to investigate the possible role of reaction 1 in atmospheric chemistry.

2. FTIR Smog Chamber System

The apparatus consists of a Mattson Sirus 100 FTIR spectrometer coupled to a 140 L Pyrex reactor described in detail elsewhere.¹⁹ Radicals were generated by the UV irradiation (22 black lamps) of mixtures of CH₃I, CD₃I, Cl₂, CH₃OCHO, C₂H₅Cl, C₂H₅F, CH₄, and CH₃Cl in 1–700 Torr total pressure with N₂, O₂, or air diluent at 295 K. Reagents and concentrations used were as follows: CH₃I, 2.9–749 mTorr; CD₃I, 13–

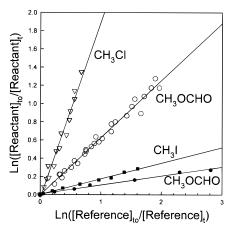
^{*} Corresponding author. e-mail: twalling@ford.com.

14 mTorr; Cl₂, 51-1950 mTorr; CH₃OCHO, 0-26.6 mTorr; C₂H₅Cl, 0-11.7 mTorr; C₂H₅F, 0-33.8 mTorr, CH₄, 0-60 mTorr; and CH₃Cl, 0-16 mTorr. Reactants loss and product formation were monitored by FTIR spectroscopy using the wavenumber range 700-2000 cm⁻¹, an analyzing path length of 28 m, and a resolution of 0.25 cm⁻¹. Infrared spectra were derived from 32 co-added spectra. Reference spectra were acquired by expanding known volumes of reference materials into the reactor. A reference spectrum of HC(O)Cl was obtained from the reference library at Ford Motor Company. Oxygen, nitrogen, synthetic air, Cl₂, CH₄, C₂H₅Cl, C₂H₅F, CH₃OCHO, CH₃Cl, and CH₃I were obtained at the highest purities available from commercial sources and used as received. CH₃I, CD₃I, and CH₃OCHO are liquids at 295 K and were degassed by freeze-pump-thaw cycling before use. Control experiments were performed to test for loss of CH₃I via either photolysis or heterogeneous reactions in the chamber; no such effects were significant. Tschuikow-Roux et al.²⁰ have reported that reaction between CH₃I and Cl₂ in the dark occurs at a "surprisingly fast" rate. In a control experiment a mixture of 24.1 mTorr of CH₃I and 238 mTorr of Cl₂ in 700 Torr of air was left in the chamber in the dark for 3 h; there was no discernible (<1%) loss of CH₃I, showing that "dark" reactions are not a complication in the present work. The uncertainties reported in this paper are two standard deviations unless otherwise stated. Standard error propagation methods are used to calculate combined uncertainties.

3. Results

3.1. Relative Rate Study at 1 Torr Total Pressure. Relative rate experiments were performed to measure the kinetics of the reaction of Cl atoms with CH₃I at 1 Torr total pressure using techniques described elsewhere.²¹ Reaction mixtures consisted of 7.7-44.7 mTorr of CH₃I, 4.8-16 mTorr of the reference compound (CH₃OCHO or CH₃Cl), and 188-302 mTorr of Cl₂ in 1 Torr total pressure of N₂ diluent. Photolysis of molecular chlorine was the source of chlorine atoms.

$$Cl_2 + h\nu \rightarrow 2Cl$$
 (2)


The kinetics of reaction 1 were measured relative to reactions 3 and 4.

$$Cl + CH_3 I \rightarrow products$$
 (1)

 $Cl + CH_3OCHO \rightarrow products$ (3)

$$Cl + CH_3Cl \rightarrow CH_2Cl + HCl$$
(4)

The loss of CH₃I versus those of CH₃OCHO and CH₃Cl in the presence of Cl atoms is shown in Figure 1 as open symbols. Variation of the initial concentration of CH₃I by a factor of 6 and the initial concentration ratio $[CH_3I]_{t_0}/[ref]_{t_0}$ by a factor of 4 had no discernible impact on the results. Linear least-squares analysis of the data in Figure 1 gives $k_1/k_3 = 0.62 \pm 0.04$ and $k_1/k_4 = 1.93 \pm 0.24$. Using $k_3 = 1.4 \times 10^{-12} 2^{22}$ and $k_4 = 4.8$ × 10⁻¹³ cm³ molecule⁻¹ s^{-1 23} gives k_1 (1 Torr) = (8.7 ± 0.6) \times 10⁻¹³ and (9.3 ± 1.2) \times 10⁻¹³ cm³ molecule⁻¹ s⁻¹, respectively. We estimate that potential systematic errors associated with uncertainties in the reference rate constants could add an additional 10% to the uncertainty ranges for $k_1(1 \text{ Torr})$. Propagating this additional uncertainty gives $k_1(1 \text{ Torr}) = (8.7 \text{ Int})$ \pm 1.1) × 10⁻¹³ and (9.3 ± 1.5) × 10⁻¹³ cm³ molecule⁻¹ s⁻¹. We choose to cite a final value which is an average of the two determinations with error limits that encompass the extremes

Figure 1. Loss of CH_3I (open symbols) and CD_3I (filled symbols) versus reference compounds: CH_3Cl (triangles), CH_3OCHO (circles), or CH_3I (squares), when mixtures containing these compounds were exposed to Cl atoms in 1 Torr of N_2 at 295 K.

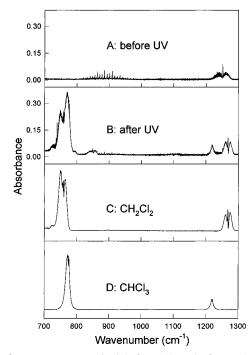
of the individual determinations. Hence, $k_1(1 \text{ Torr}) = (9.0 \pm 1.8) \times 10^{-13} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$.

For completeness, the rate of reaction of Cl atoms with CD₃I was studied at 1 Torr total pressure. Reaction mixtures consisted of 13–14 mTorr of CD₃I, 9–10 mTorr of reference compound (either CH₃OCHO or CH₃I), and 100–300 mTorr of Cl₂ in 1 Torr total pressure with N₂ diluent. The results are shown in Figure 1. Linear least-squares analysis gives $k(Cl+CD_3I)/k_3 = 0.099 \pm 0.007$ and $k(Cl+CD_3I)/k_1 = 0.17 \pm 0.02$. The rate constant ratio $k(Cl+CD_3I)/k_3 = 0.69 \pm 0.007$ can be combined with the measurement of $k_1/k_3 = 0.62 \pm 0.04$ (see above) to give an "indirect" measurement of $k(Cl+CD_3I)/k_1 = 0.16 \pm 0.02$, which is consistent with that measured directly. The fact that the reactivity of CD₃I toward Cl atoms is 6 times less than that of CH₃I suggests that at 1 Torr total pressure the reaction of Cl atoms with CH₃I proceeds mainly (perhaps solely) via H atom abstraction.

3.2. Products at 1 Torr Total Pressure. The aim of the experiments presented in this section was to investigate the relative importance of the possible reaction channels 1a-1c at 1 Torr total pressure. It should be noted that abstraction of iodine to give ICl and a CH₃ radical is endothermic by 26 kJ mol^{-1 24} and is not considered further.

$$CH_3I + CI \rightarrow CH_2I + HCl$$
 (1a)

 $CH_3I + Cl + M \rightleftharpoons adduct + M$ (1b, -1b)


$$Cl + CH_3I \rightarrow CH_3Cl + I$$
 (1c)

Mixtures of 14.8–92.1 mTorr of CH₃I and 148–222 mTorr of Cl₂ in 1 Torr of N₂ diluent were irradiated, and the loss of CH₃I and the formation of products were monitored by FTIR spectroscopy. Figure 2 shows IR spectra acquired before (A) and after (B) a 5 min irradiation of a mixture of 15.4 mTorr of CH₃I and 142.1 mTorr of Cl₂ in 1 Torr of N₂ diluent. Comparison of panel B with reference spectra of CH₂Cl₂ and CHCl₃ given in panels C and D shows the formation of these species. In addition to CH₂Cl₂ and CHCl₃ trace amounts of CH₂ICl (\approx 1–2% yield) were observed; no other carbon-containing products were detected. The observed molar yield of CHCl₃ increased with the degree of consumption of CH₃I, indicating that CHCl₃ is a secondary product resulting from the chlorination of CH₂Cl₂.

$$Cl + CH_2Cl_2 \rightarrow CHCl_2 + HCl$$
 (5)

$$CHCl_2 + Cl_2 \rightarrow CHCl_3 \tag{6}$$

The filled circles in Figure 3 show the observed formation of CH₂Cl₂ versus the loss of CH₃I. Corrections for the loss of CH₂Cl₂ via reaction 5 were computed using the Acuchem program²⁵ with $k_1 = 9 \times 10^{-13}$ and $k_5 = 3 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹;²³ corrected data are indicted by open symbols in Figure 3. Variation of the initial concentration of CH₃I over the range 14.8–92.1 mTorr had no influence on the yield of CH₂Cl₂ yield of 92 ± 8%. The absence of any observable CH₃Cl product (<4%) shows that pathway 1c is unimportant. The observation of trace amounts of CH₂ICl is a marker for hydrogen abstraction (pathway 1a) giving CH₂I radicals which then react with Cl₂ to give CH₂ICl. The reaction of Cl atoms with CH₂ICl is fast, $k = 8.5 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹, and

Figure 2. IR spectra acquired before (A) and after (B) a 5 min irradiation of a mixture of 15.4 mTorr of CH_3I and 142.1 mTorr of Cl_2 in 1 Torr of N₂ diluent. Reference spectra of CH_2Cl_2 and $CHCl_3$ are given in panels C and D.

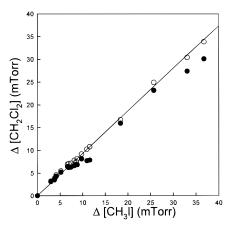
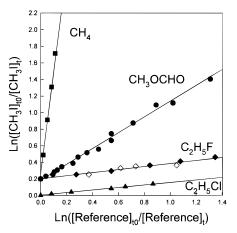
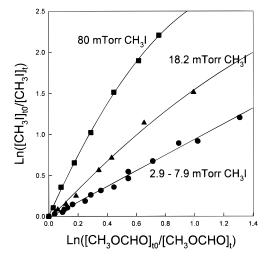



Figure 3. Formation of CH_2Cl_2 versus loss of CH_3I following UV irradiation of CH_3I/Cl_2 mixtures in 1 Torr of N_2 . Filled symbols are observed data. Open symbols are corrected for secondary chemistry. See text for details.

Figure 4. Decay of CH₃I versus CH₄ (squares), CH₃OCHO (circles), C₂H₅F (diamonds), and C₂H₅Cl (triangles) when mixtures containing these compounds were exposed to Cl atoms in 700 Torr of air or O₂ (filled symbols) or N₂ (open symbols). For clarity, data for CH₄ and CH₃OCHO have been shifted vertically by 0.2 units.

proceeds via iodine abstraction to give CH₂Cl radicals which in the presence of Cl₂ are converted into CH₂Cl₂.²⁴ The formation of essentially 100% CH₂Cl₂ in the Cl-initiated oxidation of CH₃I in 1 Torr total pressure of N₂ shows that hydrogen abstraction is the only significant reaction pathway at 1 Torr total pressure.

3.3. Relative Rate Studies at 700 Torr Total Pressure. The relative rate technique was also used to investigate the kinetics of the reaction of Cl atoms with CH₃I at 700 Torr total pressure. Reaction mixtures consisted of 2.9-100 mTorr of CH₃I, 3.4-60 mTorr of one of the reference compounds (CH₃OCHO, C₂H₅F, C₂H₅Cl, and CH₄), and 107-304 mTorr of Cl₂ in 700 Torr total pressure of N₂, air, or O₂ diluent. Photolysis of molecular chlorine was the source of chlorine atoms. The kinetics of reaction 1 were measured relative to reactions 3, 7, 8, and 9.


$$Cl + CH_3OCHO \rightarrow products$$
 (3)

$$Cl + C_2H_5F \rightarrow C_2H_4F + HCl$$
(7)

$$Cl + C_2H_5Cl \rightarrow C_2H_4Cl + HCl$$
(8)

$$Cl + CH_4 \rightarrow CH_3 + HCl$$
 (9)

Sensitivity toward five different parameters was investigated. First, the initial concentration of CH₃I was varied over the range 2.9-100 mTorr. Second, the concentration ratio $[CH_3I]_{t_0}/[ref]_{t_0}$ was varied by a factor of 5. Third, the concentration of Cl₂ was varied by a factor of 3. Fourth, experiments were performed in 700 Torr of either N₂, air, or O₂ diluent. Finally, four different reference compounds were employed. The values of k_1 derived in these experiments were independent of all the above parameters except for the initial CH₃I concentration. Experiments employing initial concentrations of CH₃I in the range 2.9-7.9 mTorr gave indistinguishable results. However, experiments using higher CH₃I concentrations (>10 mTorr) gave larger values of k_1 . Figure 4 shows the observed loss of CH₃I versus CH₃OCHO, C₂H₅F, C₂H₅Cl, and CH₄ for experiments using CH₃I concentrations in the range 2.9-7.9 mTorr. Linear least-squares analysis gives $k_1/k_3 = 0.95 \pm 0.06$, $k_1/k_7 = 0.18$ ± 0.02 , $k_1/k_8 = 0.15 \pm 0.01$, and $k_1/k_9 = 14.7 \pm 1.6$. Using k_3 = 1.4×10^{-12} , $k_7 = 7.5 \times 10^{-12}$, $k_8 = 8.0 \times 10^{-12}$, $k_7 = 7.5 \times 10^{-12}$, $k_8 = 8.0 \times 10^{-12}$, $k_8 = 8.0 \times 10^{-12}$, $k_8 = 1.0 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹ s⁻¹ gives k_1 (700 Torr) = $(1.33 \pm 0.08) \times 10^{-12}, (1.35 \pm 0.15) \times 10^{-12}, (1.20 \pm 0.08)$ \times 10⁻¹², and (1.47 \pm 0.16) \times 10⁻¹², respectively. We estimate

Figure 5. Decay of CH₃I versus CH₃OCHO for $[CH_3I]_0 = 2.9-7.9$ mTorr (squares), 18.2 mTorr (triangles), and 80 mTorr (diamonds) when mixtures containing these compounds were exposed to Cl atoms in 700 Torr of O₂.

that potential systematic errors in the reference constants could add an additional 10% to the uncertainty ranges for $k_1(700 \text{ Torr})$. Propagating this additional uncertainty gives $(1.33 \pm 0.15) \times 10^{-12}$, $(1.35 \pm 0.20) \times 10^{-12}$, $(1.20 \pm 0.15) \times 10^{-12}$, and $(1.47 \pm 0.22) \times 10^{-12}$, respectively. We choose to cite the average of these values with error limits that encompass the extremes of the individual determinations; hence, $k_1(700 \text{ Torr}) = (1.3 \pm 0.4) \times 10^{-12} \text{ cm}^3$ molecule⁻¹ s⁻¹.

It is interesting to compare the rate constant ratio $k_1/k_3 = 0.95 \pm 0.06$ measured at 700 Torr total pressure with that of $k_1/k_3 = 0.62 \pm 0.04$ measured in 1 Torr total pressure. There is a significant increase in reactivity of Cl atoms with CH₃I on moving from 1 to 700 Torr total pressure. This finding is consistent with the formation of an adduct via channel 1b, some fraction of which is removed via one or more processes that do not regenerate CH₃I. The "effective" rate constant for adduct formation, $k_{1b}k_{10}/(k_{-1b} + k_{10})$, is given by the increase in k_1/k_3 from 1 to 700 Torr, i.e., $(0.33 \pm 0.10) \times k_3 = (4.6 \pm 1.4) \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹.

Ayhens et al.¹¹ used resonance fluorescence to monitor the loss of Cl atoms in the presence of CH₃I on a millisecond time scale in 500 Torr of N₂ at 297 K and concluded that the rate constant for addition of Cl atoms to CH₃I was $k_{1b} = 2 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹. In the present study we monitor the loss of CH₃I in the presence of Cl atoms on a time scale of minutes. The fact that the "effective" rate constant for adduct formation in 700 Torr total pressure measured here is ≈43 times less than the value of k_{1b} reported by Ayhens et al. shows that in 700 Torr of air $(k_{-1b} + k_{10})/k_{10} \approx 43$. The dominant (≈98%) fate of the CH₃I–Cl adduct in 700 Torr of air at 295 K is decomposition to regenerate CH₃I and Cl atoms. Experiments performed in 700 Torr of O₂ and N₂ gave indistinguishable values of k_1 , showing that there is no significant reaction of the adduct with O₂.

 $CH_{3}I + Cl + M \rightleftharpoons CH_{3}I - Cl + M$ (1b, -1b)

$$CH_3I-Cl \rightarrow products$$
 (10)

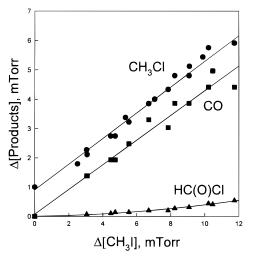

As mentioned above, in experiments using initial CH_3I concentrations greater than 8 mTorr, the observed loss of CH_3I was faster than in experiments employing lower CH_3I concentrations. Figure 5 shows the loss of CH_3I versus CH_3OCHO in 700 Torr of O_2 for experiments using mixtures of 15 mTorr of

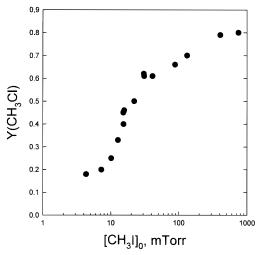
Figure 6. IR spectra acquired before (A) and after (B) a 1.5 min irradiation of a mixture of 15.2 mTorr of CH_3I and 326 mTorr of Cl_2 in 700 Torr of O_2 diluent. Reference spectra of CH_3Cl , CO, and HC-(O)Cl are also displayed.

CH₃OCHO, 200 mTorr of Cl₂, and either 2.9, 7.3, 7.9, 18.2, or 80 mTorr of CH₃I. As seen from Figure 5, the kinetic data obtained from experiments using $[CH_3I]_0 = 2.9-7.9$ mTorr are indistinguishable; however, there is a noticeable increase in the rate of CH₃I loss in the experiments using $[CH_3I]_0 = 18.2$ and 80 mTorr. The same effect was observed in experiments using C_2H_5Cl as the reference. We conclude that under the present experimental conditions there are three fates of the CH₃I-Cl adduct: decomposition back to reactants, reaction with CH₃I, and loss via one or more other processes that do not regenerate CH₃I.

3.4. Product Studies at 700 Torr Total Pressure. The aim of the experiments presented in this section was to establish the yield of CH₃Cl from reaction 1. The absence of any observable CH₃Cl at 1 Torr total pressure shows that CH₃Cl is not formed via direct substitution. The remaining question is, "what fraction of the CH₃I-Cl adduct formed at 700 Torr total pressure undergoes decomposition to give CH₃Cl and I?" To address this question, mixtures of 4.3-749mTorr of CH₃I and 44-1075 mTorr of Cl₂ in 700 Torr total pressure of N₂ or O₂ diluent were irradiated in the FTIR smog chamber system. The loss of CH₃I and the formation of products were monitored by FTIR spectroscopy. Figure 6 shows typical IR spectra acquired before (A) and after (B) a 90 s irradiation of a mixture of 15.2 mTorr of CH₃I and 326 mTorr of Cl₂ in 700 Torr of O₂ diluent. Comparison of Figure 6B with reference spectra of CH₃Cl, CO, and HCOCl shows the formation of these species. In addition to these compounds, CH₂ClOOH was observed in trace quantities and an unknown product(s) with IR features at 707, 1060, 1309, and 1359 cm⁻¹. Figure 7 shows the formation of CH₃Cl, HC(O)Cl, and CO versus loss of CH₃I for mixtures of 15 mTorr of CH₃I and 44-1075 mTorr of Cl₂ in 700 Torr of O₂ diluent. The yield of HC(O)Cl increased with the fractional consumption of CH₃I, indicating that this species is formed in secondary reactions. Linear least-squares analysis of the data in Figure 7 gives product yields of $44 \pm 3\%$ for CH₃Cl and $43 \pm 4\%$ for CO; when HC(O)Cl and CH₂ClOOH are included, we can

Figure 7. Formation of CH_3Cl (circles), CO (squares), and HC(O)Cl (triangles) versus loss of CH_3I in 700 Torr of O₂ diluent. For clarity, the data for CH_3Cl have been shifted vertically by one unit.

account for 95 \pm 11% of the loss of CH₃I. Variation of the concentration of Cl₂ by a factor of 24 had no discernible influence on the product yields. The magnitudes of the HC(O)Cl and CH₂ClOOH yields are consistent with those expected following secondary loss of CH₃Cl via reaction with Cl atoms.²⁸


Variation of the initial CH₃I concentration over the range 4.3–749 mTorr with the Cl₂ concentration fixed at 200 mTorr caused a change in the relative importance of CH₃Cl and CO products. Figure 8 shows the yield of CH₃Cl versus the initial concentration of CH₃I. As the initial CH₃I concentration increased from 4.3 to 749 mTorr, the yield of CH₃Cl increased from 18 to 80%; conversely, the CO yield decreased from 80 to 14%. Finally, an experiment was performed using 17 mTorr of CH₃I and 213 mTorr of Cl₂ in 700 Torr of N₂ diluent. The CH₃Cl yield from this experiment was 38 ± 5%, which is indistinguishable from that observed with O₂ diluent; in addition, CH₂Cl₂ was observed in a yield of 45 ± 6%.

4. Discussion

The reaction of Cl atom with CH₃I was studied at 1 and 700 Torr total pressure at 295 K. In 1 Torr of N₂ the reaction proceeds via H atom abstraction to give CH₂I radicals and HCl with a rate constant of $(9.0 \pm 1.8) \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹. The H atom abstraction could either proceed directly in a concerted bimolecular reaction or indirectly via the formation of the CH₃I–Cl adduct, which then decomposes via HCl elimination. Kambanis et al.¹² studied reaction 1 at 303 K in 2 mTorr of He diluent and reported a rate constant of $(1.37 \pm 0.05) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹ with essentially 100% conversion of Cl atoms into HCl. Kambanis et al. conducted experiments with both CH₃I and CD₃I and did not observe any evidence for a kinetic isotope effect $k_{\rm H}/k_{\rm D} = 1.1 \pm 0.1$ and concluded that H atom abstraction occurs via a weakly bound CH₃I–Cl adduct.

In contrast to the findings of Kambanis, a large kinetic isotope effect, $k_{\rm H}/k_{\rm D} = 6 \pm 1$, was observed in the present work in experiments conducted in 1 Torr of N₂ and 295 K. The origin of the apparent discrepancy between our results and those of Kambanis et al. is unknown.

Ayhens et al.¹¹ have recently studied the kinetics of reaction 1 over a wide range of temperature and pressure. At temperatures >364 K Ayhens et al.¹¹ were able to study the kinetics

Figure 8. Yield of CH_3Cl versus the initial concentration of CH_3I when mixtures of CH_3I and Cl_2 in 700 Torr total pressure of O_2 were irradiated in the chamber.

of the direct H atom abstraction channel 1a in the absence of complications caused by formation of the adduct. Ayhens et al.¹¹ observed a significant kinetic isotope effect and reported $k_{1a} = 5.4 \times 10^{-11} \exp(-1250/T) \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$. Extrapolation to 295 K gives a value of $k_{1a} = 8 \times 10^{-13} \text{ cm}^3$ molecule⁻¹ s⁻¹. This result is indistinguishable from the rate constant for H atom abstraction of $(9.0 \pm 1.8) \times 10^{-13} \text{ cm}^3$ molecule⁻¹ s⁻¹ at 1 Torr measured herein. We conclude that in 1 Torr of N₂ at 295 K the reaction of Cl atoms with CH₃I proceeds predominately via the direct H atom abstraction channel 1a with a rate constant $k_{1a} = (9.0 \pm 1.8) \times 10^{-13} \text{ cm}^3$ molecule⁻¹ s⁻¹.

On increasing the total pressure from 1 to 700 Torr, we observe a small, but significant, increase in the reactivity of Cl atoms toward CH₃I. Kinetic data from experiments conducted in 700 Torr of either N_2 or O_2 were indistinguishable. It seems reasonable to ascribe the increase in reactivity to the formation of an adduct via channel 1b, some fraction of which is lost via processes that do not regenerate reactants. In 700 Torr of air the "effective" rate constant for addition of Cl atoms to CH₃I, $k_{1b}(k_{10}/(k_{-1b} + k_{10}))$, is (4.6 ± 1.4) × 10⁻¹³ cm³ molecule⁻¹ s⁻¹. Using $k_{1b} \approx 2 \times 10^{-11}$ cm³ molecule⁻¹ s⁻¹,¹¹ we conclude that the dominant fate of the CH₃I-Cl adduct is decomposition back to reactants. In experiments using >10 mTorr of CH₃I, anomalous kinetic behavior was observed with curved relative rate plots (see Figure 5). CH₃Cl and CO were the major products of reaction 1 in 700 Torr of O2. The yield of CH3Cl increased at the expense of CO in experiments employing higher CH₃I concentrations. For experiments using < 10 mTorr of CH₃I, it appears that the CH₃Cl yield is less sensitive to the initial CH₃I concentration and is about 20%. Product studies could not be performed for initial CH_3I concentrations < 4.9 mTorr. It is unclear from the present work whether the CH₃Cl yield "levels out" at 20% for initial CH₃I concentrations < 4.9 mTorr or whether the CH₃Cl yield continues to decrease. We choose to quote an upper limit of 20% for the CH₃Cl yield from reaction 1 at 295 K. This result is consistent with the observations by Goliff and Rowland of a 9% yield of CH₃Cl from reaction 1.

The exact mechanism by which CH_3I is lost in the highpressure experiments is clearly complex and not entirely defined by the present experiments. The simplest chemical model that fits the experimental observations from this work and that of Ayhens et al.¹¹ is

$$CH_{3}I + CI \rightarrow CH_{2}I + HCl$$
 (1a)

$$CH_3I + Cl + M \rightleftharpoons CH_3I - Cl + M$$
 (1b, -1b)

$$CH_3I - Cl + CH_3I \rightarrow CH_3Cl + products$$
 (11)

$$CH_3I - Cl \rightarrow CH_3Cl + I$$
 (12)

$$CH_3I - Cl \rightarrow CH_2I + HCl$$
(13)

At 700 Torr total pressure the reaction of Cl atoms with CH₃I proceeds via both H atom abstraction and via addition with the latter dominating. The H atom abstraction channel gives CH₂I radicals which react with O₂ to give CH₂IO₂ radicals which undergo self-reaction to give iodomethoxy radicals CH₂IO. By analogy to CH₂BrO, it is expected that CH₂IO radicals will eliminate an I atom to give HCHO. HCHO is 56 times more reactive than CH₃I toward Cl atoms²³ and will be oxidized to give the observed CO product. The overwhelming fate of the CH₃I–Cl adduct is lost via other processes (either HCl elimination or rearrangement to give CH₃Cl). The adduct appears to react with CH₃I to produce CH₃Cl with this process becoming very important in experiments using [CH₃I] > 20 mTorr.

The aim of the present work was to assess the potential role of reaction 1 in atmospheric chemistry, not to unravel the complexities of the behavior of the CH₃I–Cl adduct in laboratory chambers. We show here that the effective bimolecular rate constant for reaction 1 in 700 Torr of air at 295 K is $(1.3 \pm 0.4) \times 10^{-12}$ cm³ molecule⁻¹ s⁻¹, and the CH₃Cl yield is <20%. Combining these data with an estimate of the Cl atom concentration in the marine boundary layer, 10^4 cm⁻³, and the CH₃I photolysis rate of 5×10^{-6} s⁻¹, it can be calculated that <0.05% of the CH₃I released into the atmosphere will be converted into CH₃Cl via reaction 1. Based upon our current understanding of the Cl atom concentration in the marine boundary layer, it appears that reaction 1 is of negligible atmospheric importance.

References and Notes

- (1) Davis, D.; Crawford, J.; Liu, S.; Mckeen, S.; Bandy, A.; Thornton, D.; Rowland, F.; Blake, D. J. Geophys. Res. **1996**, 101, 2135.
- (2) Chameides, W. L.; Davis, D. D. J. Geophys. Res. 1980, 85, 7383.
 (3) Solomon, S.; Garcia, R. R.; Ravishankara, A. R. J. Geophys. Res. 1994, 99, 20,491.
 - (4) Liss, P. S.; Slater, P. G. Nature 1974, 247, 181.
 - (5) Lovelock, J. E.; Maggs, R. J. Nature 1973, 241, 194.
- (6) Rasmussen, R. A.; Khalil, M. A. K.; Gunawardena, R.; Hoyt, S. D. J. Geophys. Res. **1982**, 87, 3086.
 - (7) Oram, D. E.; Penkett, S. A. Atmos. Environ. 1994, 28, 1159.
- (8) Rattigan, O. V.; Shallcross, D. E.; Cox, R. A. J. Chem. Soc., Faraday Trans. 1997, 93, 2839.
- (9) Roehl, C. M.; Burkholder, J. B.; Moortgat, G. K.; Ravishankara, A. R.; Crutzen, P. J. J. Geophys. Res. **1997**, 102, 12819.
- (10) Piety, C. A.; Nicovich, J. M.; Ayhens, Y. V.; Estupinan, E. G.; Soller, R.; McKee, M. L.; Wine, P. H. 14th International Symposium on Gas Kinetics, Leeds 1996, Book of abstracts.
- (11) Ayhens, Y. V.; Nicovich, J. M.; McKee, M. L.; Wine, P. H. J. Phys. Chem. A 1997, 101, 9382.
- (12) Kambanis, K. G.; Lazarou, Y. G.; Papagiannakopoulos, P. Chem. Phys. Lett. 1997, 268, 498.
 - (13) Goliff, W.; Rowland, F. S. Private communication, 1997.
- (14) Pszenny, A. A. P.; Keene, W. C.; Jacob, D. J.; Fan, S.; Maben, J. R.; Zetwo, M. P.; Springer-Young, M.; Galloway, J. N. *Geophys. Res. Lett.*
- 1993, 20, 699. (15) Singh, H. B.; Thakur, A. N.; Chen, Y. E. Geophys. Res. Lett. 1996,
- (15) Singh, H. B., Hakur, A. N., Chen, T. E. *Geophys. Res. Lett.* **1390** 23, 1529.
 - (16) Vogt, R.; Crutzen, P. J.; Sander, R. Nature 1996, 383, 327.
 - (17) Moore, R. M.; Groszko, W.; Niven, S. J. J. Geophys. Res. 1996,
- 101, 28,529.
 (18) Tait, V. K.; Moore, R. M.; Tokarczyk, R. J. Geophys. Res. 1994, 99. 7821.
- (19) Wallington, T. J.; Japar, S. M. J. Atmos. Chem. 1989, 9, 399.
- (20) Tschuikow-Roux, E.; Faraji, F.; Paddison, S.; Niedzielski, J.; Miyokawa, K. J. Phys. Chem. **1988**, 92, 1488.
- (21) Wallington, T. J.; Hurley, M. D. Chem. Phys. Lett. 1992, 189, 437.
 (22) Wallington, T. J.; Hurley, M. D.; Ball, J. C.; Jenkin, M. E. Chem. Phys. Lett. 1993, 211, 41.
- (23) DeMore, W. B.; Sander, S. P.; Golden, D. M.; Hampson, R. F.; Kurylo, M. J.; Howard, C. J.; Ravishankara, A. R.; Kolb, C. E.; Molina,
- M. J. Jet Propulsion Laboratory Publication 97-4, 1997.
 (24) Bilde, M.; Sehested, J.; Nielsen, O. J.; Wallington, T. J.; Meagher,
- R. J.; McIntosh, M. E.; Piety, C. A.; Nicovich, J. M.; Wine, P. H. J. Phys. Chem. A **1997**, 101, 8035.
- (25) Braun, W.; Herron, J. T.; Kahaner, D. K. Int. J. Chem. Kinet. 1988, 20, 51.
 - (26) Ford Motor Company, unpublished data, 1997.
 - (27) Wine, P. H.; Semmes, D. H. J. Phys. Chem. 1983, 87, 3572.
 - (28) Kaiser, E. W.; Wallington, T. J. J. Phys. Chem. 1994, 98, 5679.